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WAVE RESISTANCE OF AN AIR-CUSHION VEHICLE

IN UNSTEADY MOTION OVER AN ICE SHEET

UDC 532.59:629.576A. V. Pogorelova

Unsteady rectilinear motion of an air-cushion vehicle over an ice sheet at various speeds is considered.
Ice is modeled by a viscoelastic ice plate. The effects of the basin depth, the thickness and relaxation
time of ice, vehicle length, acceleration, deceleration, and speed of uniform motion on the wave
resistance of the vehicle are analyzed. Maneuvering methods for increasing or lowering the wave
resistance of the vehicle are proposed.

Key words: incompressible liquid, viscoelastic ice plate, air-cushion vehicle, unsteady motion,
wave resistance.

1. The hydrodynamic problem of an air-cushion vehicle (ACV) moving over continuous ice is modeled by a
system of surface pressures [1] moving above the floating ice plate [2]. The specified system of surface pressures q

moves at a speed u(t) over an infinite region covered by continuous ice. The coordinate system attached to the
vehicle is located as follows: the plane xOy coincides with the unperturbed ice–water interface, the x direction
coincides with the direction of motion of the vehicle, and the z axis is directed vertically upward. It is assumed
that water is an ideal incompressible liquid of density ρ2 and that the motion of the liquid is potential. Ice cover
is modeled by a viscoelastic, initially unstrained, homogeneous, isotropic plate. The period of wave processes in
the ice cover is considered to be much smaller than the relaxation time of ice. Following [2], for ice we use the
deformation law of a linear retarded elastic Kelvin–Voigt medium [3].

According to [1, 4] the wave resistance acting on the ACV is calculated by the formula

R =
∫ ∫

Ω

q
∂w

∂x
dx dy, (1.1)

where Ω is the region of distribution of the load q(x, y, t) and w(x, y, t) is the displacement of the liquid surface or
the vertical displacement of ice.

The linearized kinematic condition on the ice–water interface has the form
∂Φ
∂z

∣∣∣
z=0

=
∂w

∂t
− u

∂w

∂x
, (1.2)

where Φ(x, y, z, t) is the liquid speed potential function which satisfies the Laplace equation ΔΦ = 0.
Under the above assumptions, the linearized boundary conditions for w and Φ are written as

Gh3
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∂t ∂x
+ u2 ∂2w
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(∂Φ
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− q, z = 0,

∂Φ
∂z

= 0, z = −H.

(1.3)
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Here G = 0.5E/(1+ ν) is the elastic shear modulus of ice, E is Young’s module, ν is Poisson’s ratio, τk is the stress
relaxation time of ice or the retardation time [2, 3], h(x, y) is the ice layer thickness, ρ1(x, y) is the ice density,
H = H1 − b, H1 is the basin depth, and b = ρ1h/ρ2 is the ice submergence depth in static equilibrium. For great
depths, where H1 is much larger than h, we can set H ≈ H1. Below, it is assumed that the quantities ρ1 and h

are constant. In the calculation, the quantities G and ρ1 are taken to be their normalized values (the integrated
quantities over the plate thickness).

If, at the time t = 0, the vehicle does not move and there are no perturbations, except for the static
deformation of the ice plate, the initial conditions for the function Φ(x, y, z, t) are written as

∂Φ
∂z

∣∣∣ z=0
t=0

= 0,
(∂Φ

∂t
+

ρ1h

ρ2

∂2Φ
∂z∂t

)∣∣∣z=0
t=0

= 0. (1.4)

It is assumed that the change in the ACV speed with time can be approximately expressed by the formula

u = u1 tanh (μ1t) + (u2 − u1)
tanh (μ2(t − t2)) + tanh (μ2t2)

2

+ (u3 − u2)
tanh (μ3(t − t3)) + tanh (μ3t3)

2
, (1.5)

where u1, u2, and u3 are the successive values of the vehicle speed; μ1, μ2, and μ3 are coefficients that characterize
the acceleration (deceleration) of the vehicle; the values t2 and t3 are the times at which the vehicle acceleration is
μ2(u2 − u1)/2 and μ3(u3 − u2)/2, respectively, and are the inflection points of the function u(t).

In the present paper, the following modes of change in the vehicle speed (1.5) (modes of motion) with time
are investigated:

1) acceleration → motion at a specified speed; 2) acceleration → motion at a specified speed → deceleration
to a full stop; 3) acceleration → motion at a first specified speed → acceleration → motion at a second specified
speed; 4) acceleration → motion at a first specified speed → deceleration → motion at a second specified speed;
5) acceleration → motion at a specified speed → deceleration to a full stop → acceleration → motion at a specified
speed.

According to (1.5), the distance traveled by the vehicle is calculated by the formula

s =
u1

μ1
ln (cosh (μ1t)) +

u2 − u1

2

( 1
μ2

ln
(cosh (μ2(t − t2))

cosh (μ2t2)

)
+ tanh (μ2t2)t

)

+
u3 − u2

2

( 1
μ3

ln
(cosh (μ3(t − t3))

cosh (μ3t3)

)
+ tanh (μ3t3)t

)
. (1.6)

It is assumed that in the specified moving coordinate system, the pressure q(x, y) does not depend on time.
The system of moving pressures is given by a function q(x, y) in the form [5, 6]

q(x, y) = q0[tanh (α1(x + L/2)) − tanh (α1(x − L/2))]

× [tanh (α2(y + L/(2ω))) − tanh (α2(y − L/(2ω)))]/4, (1.7)

where q0 is the nominal pressure, L is the vehicle length, ω = L/B is the vehicle aspect ratio, B is the vehicle
width, α1 and α2 are parameters that characterize the deviation of the pressure distribution in the longitudinal
and transverse directions from a rectangular shape. The larger the values of α1 and α2, the closer the pressure
distribution to a rectangular shape. For α1 → ∞ and α2 → ∞, the pressure q is equivalent to the pressure q0

distributed uniformly over a rectangle.
2. To obtain an analytical solution of the problem, we make the formulation dimensionless. For this, we

introduce the characteristic dimension — the vehicle length L — and the characteristic speed u0, which is taken to be
the minimum phase speed for the liquid of infinite depth umin = 2(Dg3/(27ρ2))1/8 [2]. Here D = Eh3/(12(1− ν2)).
We introduce the following dimensionless variables, functions, and parameters:

x′ =
x

L
, y′ =

y

L
, z′ =

z

L
, t′ =

tu0

L
, τ ′

k =
τku0

L
, Φ′ =

Φu0

gL2
, w′ =

w

L
,

q′ =
q

ρ2gL
, u′ =

u

u0
, s′ =

s

L
, μ′

i =
μiL

u0
, u′

i =
ui

u0
, i = 1, 3
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(below, the primes at the dimensionless quantities are omitted). In view of (1.2), boundary condition (1.3) for z = 0
can be written in the dimensionless variables as

κkL

(
1 + τk

∂

∂t
− τku

∂

∂x

)
∇4 ∂Φ
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∂z ∂x

− 2u
∂3Φ

∂t ∂x ∂z
+ u2 ∂3Φ

∂x2 ∂z

)

= −kL
∂Φ
∂z

−
(∂2Φ

∂t2
− u̇

∂Φ
∂x

− 2u
∂2Φ
∂t ∂x

+ u2 ∂2Φ
∂x2

)
− ∂q

∂t
+ u

∂q

∂x
, (2.1)

where κ = Gh3/(3ρ2gL4), kL = gL/u2
0, and ε = ρ1h/(ρ2L).

In addition, it is assumed that the functions Φ(x, y, z, t) and q(x, y) satisfy the conditions required to represent
them as Fourier integral expansions in the variables x and y. Following [5, 7], we write

Φ(x, y, z, t) =
1

4π2

∞∫

0

k dk

π∫

−π

dθ

∫ ∫

Ω

(F exp (−kz) + E exp (kz))

× exp (ik((x − x1) cos θ + (y − y1) sin θ)) dx1 dy1,

q(x, y) =
1

4π2

∞∫

0

k dk

π∫

−π

dθ

∫ ∫

Ω

q(x1, y1) exp(ik((x − x1) cos θ + (y − y1) sin θ)) dx1 dy1

(2.2)

(F and E are unknown functions of the variables x1, y1, t, k, and θ).
Substituting expressions (2.2) into boundary condition (2.1) and the dimensionless boundary condition (1.3)

for z = −γ, where γ = H/L, we obtain the relation between the quantities F and E and the differential equation
for F :

E = F exp (2kγ); (2.3)

F̈ − 2Ḟ uσ + Fu2σ2 − F u̇σ +
kLk tanh (kγ)(F (1 + κk4(1 − τkuσ)) + Ḟ τkκk4)

εk tanh (kγ) + 1

=
uqσ

(1 + exp (2kγ))(εk tanh (kγ) + 1)
, σ = ik cos θ. (2.4)

To solve Eq. (2.4), following [5, 7], we introduce the function

F1 = F exp (−σs), (2.5)

where s(t) =

t∫

0

u(τ) dτ is the dimensionless distance traveled by the ACV in time t.

Substitution of (2.5) into (2.4) yields the equation

F̈1 + Ḟ1
kLκτkk5 tanh (kγ)
εk tanh (kγ) + 1

+
F1kLk tanh (kγ)(1 + κk4)

εk tanh (kγ) + 1
=

u(t)q(x1, y1)σ exp (−σs(t))
(1 + exp (2kγ))(εk tanh (kγ) + 1)

.

Solving this equation with the use of the Laplace transform, initial conditions (1.4), and the convolution theorem,
we have

F1 =

t∫

0

f(τ)K1 exp
(
− β1

2
(t − τ)

)
dτ, (2.6)

where

f(τ) =
u(τ)q(x1, y1)σ exp (−σs(τ))

(1 + exp (2kγ))(εk tanh (kγ) + 1)
, K1 =

⎧⎪⎪⎨
⎪⎪⎩

sin (
√

β(t − τ))/
√

β, β > 0,

sinh (
√−β (t − τ))/

√−β, β < 0,

t − τ, β = 0,
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β = β2 − β2
1

4
, β1 =

κτkkLk5 tanh (kγ)
εk tanh (kγ) + 1

, β2 =
kLk tanh (kγ)(1 + κk4)

εk tanh (kγ) + 1
.

Substituting (2.3) and (2.5) in (2.2), we obtain the following expression for the function Φ:

Φ(x, y, z, t) =
1

4π2

∞∫

0

k dk

π∫

−π

dθ

∫ ∫

Ω

F1 exp (σs)(exp (−kz) + exp (k(z + 2γ)))

× exp (ik((x − x1) cos θ + (y − y1) sin θ)) dx1 dy1. (2.7)

To find the wave resistance R from formula (1.1), it is necessary to express the deflection w in terms of the
functions Φ and q. For this, we use the boundary condition (1.3) in dimensionless form

κ

(
1 + τk

∂

∂t
− τku

∂

∂x

)
∇4w + w = ϕ(x, y, t),

ϕ(x, y, t) = −q − ∂Φ
∂t

∣∣∣
z=0

+ u
∂Φ
∂x

∣∣∣
z=0

− ε
∂2Φ
∂z ∂t

∣∣∣
z=0

+ εu
∂2Φ
∂z ∂x

∣∣∣
z=0

.

(2.8)

An asymptotic analysis of Eq. (2.8) as a function of the parameter κ is given below. For the values of κ � 1
corresponding to a thin ice layer and large vehicle dimensions, the asymptotic solution of Eq. (2.8) is sought in the
form

wi = w0
i + κw1

i + . . . . (2.9)

Substitution of (2.9) into (2.8) yields the following values for the functions w0
i , w1

i and wi:

w0
i = ϕ(x, y, t), w1

i = −
(
1 + τk

∂

∂t
− τku

∂

∂x

)
∇4ϕ(x, y, t),

wi =
(
1 − κ∇4 − κτk

∂

∂t
∇4 + κτku

∂

∂x
∇4

)
ϕ(x, y, t).

(2.10)

Setting τk = 0 in (2.10) (the relaxation time is equal to zero, and the plate is purely elastic) and taking into
account the form of the function ϕ (2.8) and expansions (2.2) and (2.7), we express wi as follows:

wi(x, y, t) =
1

4π2

∞∫

0

k dk

π∫

−π

dθ

∫ ∫

Ω

ϕ(x1, y1, t)(1 − κk4)

× exp (ik((x − x1) cos θ + (y − y1) sin θ)) dx1 dy1. (2.11)

For large values of κ (κ → ∞) (a thick ice layer and small vehicle dimensions), the asymptotic solution of
Eq. (2.8) is sought in the form

we = w0
e + . . . ,

where w0
e is a solution of the equation

(
1 + τk

∂

∂t
− τku

∂

∂x

)
∇4w = 0. (2.12)

We note that any solution of the equation ∇4w = 0 is symmetric about the plane yOz and, hence, the wave
resistance R is equal to zero [see formula (1.1)]. It is assumed that, for κ → ∞, a particular solution of Eq. (2.12)
is the solution w0

e = 0. Then, in view of Eq. (2.11), the function w can be expressed as

w(x, y, t) =
1

4π2

∞∫

0

k dk

π∫

−π

dθ

∫ ∫

Ω

ϕ(x1, y1, t)M(κ) × exp (ik((x − x1) cos θ + (y − y1) sin θ)) dx1 dy1, (2.13)

where

M(κ) → 1 − k4
κ (κ → 0); (2.14)

M(κ) → 0 (κ → ∞). (2.15)

74



Thus, we have bilateral asymptotic expansions of the function M(κ) for small and large values of κ. The
interpolation formula for the quantity M(κ) in the region 0 � κ < ∞ is constructed by asymptotic interpolation
[8, 9]. According to this method, the quantity M(κ) is sought in the form

M(κ) = 1 − k4
κΨ(κ), Ψ(0) = 1. (2.16)

For κ → 0, formula (2.16) retains the same order of accuracy as the asymptotic representation (2.14). The function
Ψ(κ) is specified a priori and depends on several parameters, which are chosen so that the approximate formula
(2.16) yields a correct asymptotic representation of specified accuracy for the other limiting case as κ → ∞. In the
particular case where only the higher-order term of the asymptotic representation M(κ) is known for κ → ∞, this
function is taken to be the function Ψ(κ) = (1 + Cκ

l)m [8, 9]. For m = −1, passing to the limit as κ → ∞ and
comparing expressions (2.15) and (2.16), we obtain Ψ(κ) = (1 + k4

κ)−1 and, hence, M(κ) = (1 + k4
κ)−1. Thus,

in view of (2.13), the expression for w is written as

w(x, y, t) =
1

4π2

∞∫

0

k dk

π∫

−π

dθ

∫ ∫

Ω

ϕ(x1, y1, t)
1

1 + κk4

× exp (ik((x − x1) cos θ + (y − y1) sin θ)) dx1 dy1, (2.17)

where ϕ(x1, y1, t) and Φ(x, y, z, t) are determined from formulas (2.8) and (2.7), respectively.
Substituting (2.17) into (1.1) in view of (1.7), (2.2), (2.6)–(2.8) and making the change of variables k = λ

and k cos θ = α, and performing simple transformations similar to the transformations in [5, 7], we obtain the
dimensionless wave-resistance coefficient A in the form

A =
π2ω

(α1L)2(α2L)2

t∫

0

u(τ)

∞∫

0

exp (−β1(t − τ)/2)Kλ

1 + κλ4

λ∫

0

cos (α(s(t) − s(τ)))

× sin2(α/2) sin2(
√

λ2 − α2/(2ω))α2

sinh 2(πα/(2α1L)) sinh 2(π
√

λ2 − α2/(2α2L))
√

λ2 − α2
dα dλ dτ, (2.18)

where

K =

⎧⎪⎪⎨
⎪⎪⎩

cos (
√

β (t − τ))(1 − β1 tan (
√

β (t − τ))/(2
√

β )), β > 0,

cosh (
√−β (t − τ))(1 − β1 tanh (

√−β (t − τ))/(2
√−β )), β < 0,

1 − β1/2, β = 0,

β = β2 − β2
1

4
, β1 =

κτkkLλ5 tanh (λγ)
ελ tanh (λγ) + 1

, β2 =
kLλ tanh (λγ)(1 + κλ4)

ελ tanh (λγ) + 1
,

R/P = Aq0/(ρ2gL), P = q0LB;

the dimensionless functions u(τ), s(t), and s(τ) are calculated by formulas (1.5) and (1.6).
3. Numerical calculations using formula (2.18) were performed for the following parameter values: ρ2 =

1000 kg/m3, ρ1 = 900 kg/m3, E = 5 · 109 N/m2, ν = 1/3, α1L = α2L = 10, ω = 2, and τk = 0.69 sec. The
relaxation time τk was chosen in accordance with the results of [10, 11].

Figure 1 gives a curve of the dimensionless wave resistance coefficient A versus time t for the first mode of
vehicle motion. It is obvious that, after the ACV accelerates and approaches uniform motion, its wave resistance
tends with time to some constant values dependent on the speed. In contrast to the results of [12], where ice
was modeled by a purely elastic plate, the dependences A(t) do not have an oscillatory nature. From Fig. 1 it
follows that the vehicle has the highest wave resistance at speeds equal to umin–1.4umin (curves 3–5). When the
vehicle reaches subcritical speeds (u1 < umin) after acceleration, its wave resistance is low (curves 1 and 2) but, in
contrast to the results of [12], it is not equal to zero, If the vehicle reaches supercritical speeds (u1 > 1.4umin) after
acceleration (curves 6 and 7), the wave resistance first increases, then, without having reached the critical values,
begins to decrease, and reaches some constant values, much smaller than the critical values. Let us compare the
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Fig. 1. Wave resistance of ACV versus time for L = 10 m, h = 0.2 m, ε = 0.018, κ = 0.038,
umin = 8.721 m/sec, τk = 0.69 sec, γ = 4, and μ1 = 0.5 sec−1: 1) u1 = u2 = u3 = 0.6umin; 2) u1 =
u2 = u3 = 0.8umin; 3) u1 = u2 = u3 = umin; 4) u1 = u2 = u3 = 1.2umin; 5) u1 = u2 = u3 = 1.4umin;
6) u1 = u2 = u3 = 2umin; 7) u1 = u2 = u3 = 3umin.

wave resistance of the vehicle in uniform motion after acceleration and the results obtained for the steady-state
problem of vehicle motion over a viscoelastic plate [6].

Figures 2 and 3 show curves of the wave resistance of the vehicle versus speed of motion for thin and thick
ice layers, respectively. Curves 1–3 were obtained using formula (2.18) (the unsteady solution) at t = 100 in the
case of uniform motion at specified speed u1 after acceleration (the first mode of motion), curves 4–6 are the
results of calculations using the formulas from [6] (the steady-state solution of the problem). From Figs. 2 and 3, it
follows that the unsteady solution is close to the steady-state one and exceeds it in the case of supercritical speeds
(u > 1.4umin); for the critical and subcritical speeds, the difference between the results is larger. Nevertheless, the
speeds corresponding to the maximum wave resistance are identical for the steady-state and unsteady solutions: for
small and finite depths, the critical speed is close to the value of

√
gH , and for great and infinite depths, it is close

to the values of 1.1umin–1.2umin. An increase in the ice layer thickness leads to a decrease in the wave resistance.
For motion at supercritical speeds, a decrease in the basin depth leads to a certain decrease in the wave resistance
at various thickness of the ice layer.

Figure 4 shows the maximum values of the wave resistance A∗ at various basin depths γ in the case of
uniform motion. Curves 1 and 2 correspond to the unsteady solution [formula (2.18)] and uniform motion of the
vehicle after acceleration, and curves 3 and 4 to the steady-state solution of the problem [6]. It is evident that, for
the unsteady solution of the problem, the dependence of the maximum wave resistance on depth is nonmonotonic:
the maximum wave resistance as a function of the ice layer thickness is in the range γ = 0.5–1.0. As the depth
increases, the wave resistance decreases, and at γ > 1.5, it reaches a constant value. For very small depths, the
unsteady solution also gives smaller values of the wave resistance. A similar effect at a small depth was observed
in the experiments of [13]. As the depth decreases in the case of the steady-state solution, the wave resistance
increases for a thin ice layer and decreases for a thick ice layer; for small values of γ, the solution diverges. For a
thick ice layer and the unsteady mode of motion, the value of γ has little effect on the maximum value of the wave
resistance. The difference between the steady-state and unsteady values of the wave resistance for small γ can be
attributed to the imperfection of linear wave theory. As is known, linear wave theory is more justified for unsteady
solutions of the problem [5].

Figure 5 shows the effects of various modes of acceleration and deceleration on the wave resistance of the
ACV. From an analysis of curves 1 and 2, it follows that the higher the initial acceleration of the vehicle in
reaching a supercritical speed, the lower the maximum wave resistance of the ACV. This conclusion agrees with the
results of [5, 7] for uniformly accelerated motion of ACVs on pure water and in a broken-ice field. Curves 3 and 4
correspond to the wave resistance of the vehicle in reaching a supercritical speed with the subsequent deceleration
to a full stop. In this case, the absolute value of the wave resistance is the higher, the smaller the absolute value
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Fig. 2. Wave resistance of ACV in uniform motion versus speed u for the unsteady solution (1–3) and
steady-state solution (4–6) for L = 10 m, h = 0.1 m, ε = 0.009, κ = 4.783 · 10−3, umin = 6.725 m/sec,
and τk = 0.69 sec: 1) u1 = u2 = u3 = u, μ1 = 0.5 sec−1, t = 100 sec, and γ = 0.3; 2) u1 = u2 = u3 = u,
μ1 = 0.5 sec−1, t = 100 sec, and γ = 0.7; 3) u1 = u2 = u3 = u, μ1 = 0.5 sec−1, t = 100 sec, and γ = 4;
4) γ = 0.3; 5) γ = 0.7; 6) γ = 4.

Fig. 3. Wave resistance of ACV in uniform motion versus speed u for the unsteady solution (1–3) and
steady-state solution (4–6) for L = 20 m, h = 0.5 m, ε = 0.023, κ = 0.037, umin = 12.297 m/sec, and
τk = 0.69 sec: 1) u1 = u2 = u3 = u, μ1 = 0.5 sec−1, t = 100 sec, and γ = 0.25; 2) u1 = u2 = u3 = u,
μ1 = 0.5 sec−1, t = 100 sec, and γ = 0.7; 3) u1 = u2 = u3 = u, μ1 = 0.5 sec−1, t = 100 sec, and γ = 3;
4) γ = 0.25; 5) γ = 0.7; 6) γ = 3.
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g

Fig. 4. Maximum wave resistance of the vehicle A∗ in uniform motion versus basin
depth γ for the unsteady (1 and 2) and steady-state (3 and 4) solutions for τk =
0.69 sec: 1) u1 = u2 = u3 = u, μ1 = 0.5 sec−1, t = 100 sec, L = 10 m, h = 0.1 m,
ε = 0.009, κ = 4.783 · 10−3, and umin = 6.725 m/sec; 2) u1 = u2 = u3 = u,
μ1 = 0.5 sec−1, t = 100 sec, L = 20 m, h = 0.5 m, ε = 0.023, κ = 0.037, and
umin = 12.297 m/sec; 3) L = 10 m, h = 0.1 m, ε = 0.009, and κ = 4.783 · 10−3;
4) L = 20 m, h = 0.5 m, ε = 0.023, and κ = 0.037.
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Fig. 5. Wave resistance of ACV (a) and speed of ACV (b) versus time for L = 10 m, h = 0.2 m, ε = 0.018,
κ = 0.038, umin = 8.721 m/sec, τk = 0.69 sec, and γ = 4: 1) u1 = u2 = u3 = 3umin and μ1 = 0.5 sec−1;
2) u1 = u2 = u3 = 3umin and μ1 = 0.05 sec−1; 3) u1 = 3umin, u2 = u3 = 0, μ1 = 0.5 sec−1, μ2 = 0.6 sec−1, and
=15 sec; 4) u1 = 3umin, u2 = u3 = 0, μ1 = 0.5 sec−1, μ2 = 0.1 sec−1, and t2 = 30 sec; 5) u1 = 3umin, u2 = umin,
u3 = 3umin, μ1 = μ2 = 0.5 sec−1, μ3 = 0.6 sec−1, t2 = 20 sec, and t3 = 45 sec; 6) u1 = 3umin, u2 = u3 = umin,
μ1 = 0.5 sec−1, μ2 = 0.1 sec−1, and t2 = 30 sec; 7) u1 = u2 = u3 = 1.2umin and μ1 = 0.5 sec−1.

of the deceleration coefficient. From an analysis of curve 5, it follows that in the case where the vehicle reaches a
supercritical speed, then decelerates to a subcritical speed, and then accelerates to a supercritical speed, the wave
resistance also increases. From an analysis of curve 6, it follows that deceleration from a supercritical speed to a
subcritical speed with a small deceleration coefficient leads to an increase in the wave resistance. For comparison,
Fig. 5 shows curve 7, which is the dependence of the wave resistance on time for acceleration to the critical speed
and subsequent motion at the critical speed.

4. The analysis of the results leads to the following conclusions. The ACV has the lowest wave resistance
if it moves at subcritical speeds or reaches supercritical speeds at the maximum acceleration and then moves at
supercritical speeds. When the ACV moves over ice at supercritical speeds, its deceleration should be performed at
the maximum possible absolute deceleration coefficient to prevent the maximum wave resistance and possible ice
breakup.

To increase the wave resistance (which is necessary, for example, for resonance breaking of ice sheets by
air-cushion vehicles), one can use the following modes of motion:

— attainment of a supercritical speed with the minimum possible acceleration;
— attainment of the critical speed and motion at this speed;
— attainment of a subcritical speed followed by deceleration to a full stop or to the subcritical speed with

the subsequent attainment of the supercritical speed;
— attainment of a supercritical speed with the subsequent deceleration to a full stop with the least absolute

value of the deceleration coefficient.
Use of asymptotic interpolation to obtain formula (2.18) for the plate deflection w gives good agreement to

the well-known steady-state solution for various values of the ice layer thickness, vehicle length, basin depth, and
vehicle speed. Nevertheless, it should be noted that the comparison was made for small values of κ = Gh3/(3ρ2gL4).
However, from the experimental results of [14], it follows that ice breaking by the resonance method occurs only
for κ < 0.025. In the case of large values of κ (great thickness of the layer and small length of the vehicle), the
dimensionless wave resistance coefficient of the vehicle A is very small and the wave deflection is insufficiently large
to break the ice cover. For example, as was shown in [12] for the steady-state and unsteady solutions, an increase
in the ice layer thickness from 0.1 to 0.5 m leads to a factor of 20 decrease in the wave resistance of a vehicle of
length L = 10 m, with the remaining parameters of the vehicle, basin, and ice being the same (in this case, the
value of κ changes from 0.005 to 0.598).
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In contrast to the results of [12], if the viscous properties of the ice plate are taken into account, then, first,
when entering the mode of uniform motion, the wave resistance of the vehicle does not have an oscillatory nature,
and, second, the vehicle moving at subcritical speeds has a small but nonzero wave resistance.

This work was supported by the program “Development of the Scientific Potential of the Higher School
(2006–2008)” (Grant No. RNP.2.1.2.1809).
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